4.6 Article

Discharge characterization in plasma electrolytic oxidation of aluminium

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 36, Issue 17, Pages 2110-2120

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/36/17/314

Keywords

-

Ask authors/readers for more resources

Digital video imaging of the plasma electrolytic oxidation (PEO) of aluminium has been performed, which allowed evaluation of both dimensional characteristics of individual microdischarges appearing at the oxide-electrolyte interface and their collective behaviour throughout the oxidation process. It has been shown that the microdischarge cross-sectional dimensions vary within the range 0.01-1.35 mm(2). In the course of PEO processing, small localized events (<0.03 mm(3)) always dominate in the microdischarge spatial distribution and the relative proportion of medium-sized to very large microdischarges is gradually redistributed in favour of the latter. Temporal dependences have been found for the fraction of surface area instantaneously experiencing the discharge, as well as for the spatial and current densities of the microdischarge. Discharge mechanisms occurring during PEO are discussed and a model of microdischarge formation is suggested, assuming the possibility of free-electron generation and glow discharge ignition in the gaseous media developed at the oxide-electrolyte interface. First approximation evaluations of thermal processes in the oxide layer under the discharge conditions have been considered. The estimated ranges of the microdischarge current density (50-18 kA m(-2)) and duration (0.25-3.5 ms) sufficient for initiating phase transitions (e.g. γ-α transformation and melting) in the surface oxide layer are shown to be in good agreement with experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available