4.7 Article

The crystal structure and mutational analysis of human NUDT9

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 332, Issue 2, Pages 385-398

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(03)00954-9

Keywords

ADP-ribose pyrophosphatase; TRPM2 ion channel; Nudix; hydrolase

Funding

  1. NIGMS NIH HHS [GM49857] Funding Source: Medline
  2. PHS HHS [R0164091] Funding Source: Medline

Ask authors/readers for more resources

Human ADP-ribose pyrophosphatase NUDT9 belongs to a superfamily of Nudix hydrolases that catabolize potentially toxic compounds in the cell. The enzyme hydrolyzes ADP-ribose (ADPR) to AMP and ribose 5'-phosphate. NUDT9 shares 39% sequence identity with the C-terminal cytoplasmic domain of the ADPR-gated calcium channel TRPM2, which exhibits low but specific enzyme activity. We determined crystal structures of NUDT9 in the presence and in the absence of the reaction product ribose 5-phosphate. On the basis of these, structures and comparison with a bacterial homologue, a model of the substrate complex was built. The structure and activity of a double point mutant (R229E230F231 to R229I230L231),which mimics the Nudix signature of the ion channel domain, was determined. Finally, the activities of a pair of additional mutated constructs were compared to the wild-type enzyme. The first corresponds to a minimal Nudix domain missing an N-terminal domain and C-terminal tail; the second disrupts two potential general bases in the active site. NUDT9 contains an N-terminal domain with a novel fold and a catalytic C-terminal Nudix domain. Unlike its closest functional homologue (homodimeric Escherichia coli ADPRase), it is active as a monomer, and the substrate is bound in a cleft between the domains. The structure of the RIL mutant provides structural basis for the reduced activity of the TRPM2 ion channel. The conformation and binding interactions of ADPR substrate are predicted to differ from those observed for E. coli ADPRase; mutation of structurally aligned acidic residues in their active sites produce significantly different effects on catalytic efficiency, indicating that their reaction pathways and mechanisms may have diverged. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available