4.1 Article

The evolution of manus shape in sauropod dinosaurs: Implications for functional morphology, forelimb orientation, and phylogeny

Journal

JOURNAL OF VERTEBRATE PALEONTOLOGY
Volume 23, Issue 3, Pages 595-613

Publisher

SOC VERTEBRATE PALEONTOLOGY
DOI: 10.1671/A1108

Keywords

-

Categories

Ask authors/readers for more resources

Sauropods have a unique digitigrade and semi-tubular manus whose shape has been used as a synapomorphy that unites most sauropod taxa. The vertical orientation and semi-tubular arrangement of the metacarpals suggest the sauropod manus improved the mechanical ability of the forelimb to support great weight. However, the evolutionary mechanism responsible for modifying the relatively flat metacarpus of basal saurischians into a semitubular arrangement has remained uninvestigated. Furthermore, trackway evidence shows that manus pronation was more developed in sauropods than other saurischians. However, because the radius and ulna do not cross completely in sauropods, reconciling mantis print orientation with forelimb osteology has been difficult. Restudy of North American neosauropod appendicular osteology and anatomy suggests that the unique manus shape of sauropods is linked temporally with reversion to a quadrupedal posture and the necessity of manus pronation. Articulation and manipulation of neosauropod forelimbs and casts, as well as a scale model of Apatosaurus louisae, suggest that, as the sauropod forelimb resumed a weight-bearing role, the primitively anterolateral position of the radius shifted to assume a more internal (anteromedial) orientation in relation to the ulna proximally and distally. The internal shift of the radius may have subsequently pronated the manus while simultaneously altering the shape of the digital arch, transforming a flat dinosaurian manus into a digitigrade, semi-tubular structure. Morphological evidence presented here suggests a semitubular manus was an exaptation that ultimately functioned as a weight-distributing structure, and that this unique morphology may have been present in basal sauropods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available