4.6 Article

Evaluation of genotoxic risk and oxidative DNA damage in mammalian cells exposed to mycotoxins, patulin and citrinin

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 191, Issue 3, Pages 255-263

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0041-008X(03)00254-0

Keywords

patulin; citrinin; genotoxicity; sister chromatid exchange; single cell gel electrophoresis; oxidative DNA damage

Ask authors/readers for more resources

Mycotoxins are fungal secondary metabolites with very diversified toxic effects in humans and animals. In the present study, patulin (PAT) and citrinin (CTN), two prevalent mycotoxins, were evaluated for their genotoxic effects and oxidative damage to mammalian cells, including Chinese hamster ovary cells (CHO-K1), human peripheral blood lymphocytes, and human embryonic kidney cells (HEK293). PAT, but not CTN, caused a significant dose-dependent increase in sister chromatid exchange (SCE) frequency in both CHO-K1 and human lymphocytes. PAT also elevated the levels of DNA gap and break in treated CHO-K1. In the single cell gel electrophoresis (SCGE) assay, exposure of HEK293 to concentrations above 15 muM of PAT induced DNA strand breaks; the tail moment values also greatly increased after posttreatment with formamidopyrimidine-DNA glycosylase (Fpg). This suggests that in human cells PAT is a potent clastogen with the ability to cause oxidative damage to DNA. However, no significant change in the tail moment values in CTN-treated cultures was found, suggesting that CTN is not genotoxic to HEK293. Incubation of HEK293 with CTN increased the mRNA level of heat shock protein 70 (HSP70), but not that of human 8-hydroxyguanine DNA glycosylase 1 (hOGG1). PAT treatment did not modulate the expression of either HSP70 or hOGGI mRNA. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available