4.8 Article

Controlled targeting of liposomal doxorubicin via the folate receptor in vitro

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 92, Issue 1-2, Pages 49-67

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-3659(03)00295-5

Keywords

drug delivery; glioma; brain tumor; ligand; insertion

Ask authors/readers for more resources

Differential expression of folate receptor has been exploited to target liposomes to tumors. Astrogliomas express low folate receptor levels and are typically surrounded by normal cells expressing little or no folate receptors. While targeting cells with high over-expression of folate receptor (KB and HeLa) has been demonstrated, it is unclear whether targeting tumors expressing low levels of folate receptor is possible. In this study, it was demonstrated that optimizing the number of targeting ligands (folic acid) enables differential liposomal doxorubicin uptake in C6 glioma while sparing healthy cortical cells. By micellization of folate conjugates and their controlled insertion into pre-formed liposomes, tight control over the number of targeting ligands per liposome was demonstrated. Doxorubicin uptake in KB and C6 cells was dependent oil the number of targeting ligands, while cortical cells showed increasing non-specific uptake with ligand number. Co-culture of C6 glioma with cortical cells confirmed preferential uptake in C6 glioma relative to cortical cells. A cell kill experiment showed that folate-targeted liposomal doxorubicin is cytotoxic and slows proliferation of KB and C6 cells with minimal effect on cortical cells. Therefore modulation of targeting ligand number enables significant differential uptake of doxorubicin in cells with low levels of folate receptor. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available