4.6 Article

TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 38, Pages 36005-36012

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M304266200

Keywords

-

Ask authors/readers for more resources

Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily that has been shown to induce angiogenesis, apoptosis in tumor cells, and NF-kappaB activation through binding to its receptor, fibroblast growth factor-inducible 14. We have identified TWEAK as an inducer of constitutive NF-kappaB activation by expression cloning, and we report here sequential regulation by TWEAK of two separate signaling cascades for NF-kappaB activation, the NF-kappaB essential modulator-dependent and - independent signaling pathways. Upon TWEAK stimulation, IkappaBalpha is rapidly phosphorylated, generating NF-kappaB DNA-binding complexes containing p50 and RelA in a manner dependent on the canonical IkappaB kinase complex. Unlike TNF-alpha, TWEAK stimulation results in prolonged NF-kappaB activation with a transition of the DNA-binding NF-kappaB components from RelA- to RelB-containing complexes by 8 h, and the latter remained active in binding at least until 24 h post-stimulation. This long lasting activation is accompanied by the proteasome-mediated processing of NF-kappaB2/p100, which does not depend on the NF-kappaB essential modulator but requires IkappaB kinase 1 and functional NF-kappaB-inducing kinase activity. Finally, we show that fibroblast growth factor-inducible 14 with a mutation at its TNF receptor-associated factor ( TRAF)- binding site cannot activate NF-kappaB and that TWEAK fails to induce the p100 processing and IkappaBalpha phosphorylation in cells deficient for TRAF2 and TRAF5. Our results thus identify TWEAK as a novel physiological regulator of the noncanonical pathway for NF-kappaB activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available