4.8 Article

Novel core (polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 92, Issue 1-2, Pages 103-112

Publisher

ELSEVIER
DOI: 10.1016/S0168-3659(03)00296-7

Keywords

dextran; caprolactone; copolymer; core-corona nanoparticle; lectin; Bauhinia monandra; lens culinaris

Ask authors/readers for more resources

This study describes new lectin-decorated or protein-loaded nanoparticles with a hydrophobic poly(e-caprolactone) (PCL) core and a hydrophilic dextran (Dex) corona. In this view, a family of block Dex-PCLn copolymers was first synthesized, consisting of a Dex backbone to which n preformed PCL blocks were grafted. The ability of these new copolymers to form nanoparticles was evaluated in comparison with a series of PCL homopolymers of various molecular weights (2000, 10 000 and 40 000 g/mole). Two different nanoparticle preparation methods have been developed and tested for their efficacy to incorporate proteins. For this, three proteins were used: a model protein, bovine serum albumin (BSA), a lectin from leaves of Bauhinia monandra (BmoLL) and Lens culinaris (LC) lectin. All these proteins were successfully incorporated in nanoparticles with a mean diameter around 200 nm. Lectins could also be adsorbed onto the surface of Dex-PCLn nanoparticles. Surface-bound BmoLL conserved its hemagglutinating activity, suggesting the possible application of this type of surface-modified nanoparticles for targeted oral administration. Caco-2 cellular viability was higher than 70% when put in contact with Dex-PCLn nanoparticles, even at concentrations as high as 660 mug/ml. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available