4.8 Article

Isochoric heating of solid-density matter with an ultrafast proton beam

Journal

PHYSICAL REVIEW LETTERS
Volume 91, Issue 12, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.91.125004

Keywords

-

Ask authors/readers for more resources

A new technique is described for the isochoric heating (i.e., heating at constant volume) of matter to high energy-density plasma states (>10(5) J/g) on a picosecond time scale (10(-12)sec). An intense, collimated, ultrashort-pulse beam of protons-generated by a high-intensity laser pulse-is used to isochorically heat a solid density material to a temperature of several eV. The duration of heating is shorter than the time scale for significant hydrodynamic expansion to occur; hence the material is heated to a solid density warm dense plasma state. Using spherically shaped laser targets, a focused proton beam is produced and used to heat a smaller volume to over 20 eV. The technique described of ultrafast proton heating provides a unique method for creating isochorically heated high-energy density plasma states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available