4.6 Article

Lymphocyte function-associated antigen-1-mediated T cell adhesion is impaired by low molecular weight phosphotyrosine phosphatase-dependent inhibition of FAK activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 38, Pages 36763-36776

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M302686200

Keywords

-

Ask authors/readers for more resources

Protein tyrosine phosphorylation is one of the earliest signaling events detected in response to lymphocyte function-associated antigen-1 (LFA-1) engagement during lymphocyte adhesion. In particular, the focal adhesion kinase p125FAK, involved in the modulation and rearrangement of the actin cytoskeleton, seems to be a crucial mediator of LFA-1 signaling. Herein, we investigate the role of a FAK tyrosine phosphatase, namely low molecular weight phosphotyrosine phosphatase (LMW-PTP), in the modulation of LFA-1-mediated T cell adhesion. Overexpression of LMW-PTP in Jurkat cells revealed an impairment of LFA-1-dependent cell-cell adhesion upon T cell receptor (TCR) stimulation. Moreover, in these conditions LMW-PTP causes FAK dephosphorylation, thus preventing the activation of FAK downstream pathways. Our results also demonstrated that, upon antigen stimulation, LMW-PTP-dependent FAK inhibition is associated to a strong reduction of LFA-1 and TCR co-clustering toward a single region of T cell surface, thus causing an impairment of receptor activity by preventing changes in their avidity state. Because co-localization of both LFA-1 and TCR is an essential event during encounters of T cells with antigen-presenting cells and immunological synapse ( IS) formation, we suggest an intriguing role of LMW-PTP in IS establishment and stabilization through the negative control of FAK activity and, in turn, of cell surface receptor redistribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available