4.4 Article

Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides

Journal

BIOCHEMISTRY
Volume 42, Issue 37, Pages 11016-11022

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi034747o

Keywords

-

Ask authors/readers for more resources

The transfer of an electron from exogenous manganese (II) ions to the bacteriochlorophyll dimer, P, of bacterial reaction centers was characterized for a series of mutants that have P/P+ midpoint potentials ranging from 585 to 765 mV compared to 505 mV for wild type. Light-induced changes in optical and EPR spectra of the mutants were measured to monitor the disappearance of the oxidized dimer upon electron donation by manganese in the presence of bicarbonate. The extent of electron transfer was strongly dependent upon the P/P+ midpoint potential. The midpoint potential of the Mn2+/Mn3+ couple was calculated to decrease linearly from 751 to 623 mV as the pH was raised from 8 to 10, indicating the involvement of a proton. The electron donation had a second order rate constant of approximately 9 x 10(4) M-1 s(-1), determined from the linear increase in rate for Mn2+ concentrations up to 200 muM. Weak dissociation constants of 100-200 muM were found. Quantitative EPR analysis of the six-line free Mn2+ signal revealed that up to seven manganese ions were associated with the reaction centers at a 1 mM concentration of manganese. The association and the electron transfer between manganese and the reaction centers could be inhibited by Ca2+ and Na+ ions. The ability of reaction centers with high potentials to oxidize manganese suggests that manganese oxidation could have preceded water oxidation in the evolutionary development of photosystem II.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available