4.7 Article

Soyasapogenol A and B distribution in soybean (Glycine max L. Merr.) in relation to seed physiology, genetic variability, and growing location

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 51, Issue 20, Pages 5888-5894

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf0343736

Keywords

soybean; Glycine mair; soyasaponin; soyasapogenol; triterpene aglycones; HPLC/ELSD; isoflavones; germination; soaking

Ask authors/readers for more resources

An efficient analytical method utilizing high-performance liquid chromatography (HPLC)/evaporative light scattering detector (ELSD) was developed to isolate and quantify the two major soyasaponin aglycones or precursors in soybeans, triterpene soyasapogenol A and B. Soaking of seeds in water up to 15 h did not change the content of soyasapogenols. Seed germination had no influence on soyasapogenol A content but increased the accumulation of soyasapogenol B. Soyasapogenols were mainly concentrated in the axis of the seeds as compared with the cotyledons and seed coat. In the seedling, the root (radicle) contained the highest concentration of soyasapogenol A, while the plumule had the greatest amounts of soyasapogenol B. In 10 advanced food-grade soybean cultivars grown in four locations in Ontario, total soyasapogenol content in soybeans was 2 +/- 0.3 mg/g. Soyasapogenol B content (1.5 +/- 0.27 mg/g) was 2.5-4.5-fold higher than soyasapogenol A content (0.49 +/- 0.1 mg/g). A significant variation in soyasapogenol content was observed among cultivars and growing locations. There was no significant correlation between the content of soyasapogenols and the total isoflavone aglycones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available