4.7 Article

Optimal control of structures with semiactive-tuned mass dampers

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 266, Issue 4, Pages 847-874

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-460X(03)00191-3

Keywords

-

Ask authors/readers for more resources

In this paper, the optimal performance of a magnetorheological (MR) damper which is used in a tuned mass damper in reducing the peak responses of a single-degree-of-freedom structure subjected to a broad class of seismic inputs including the harmonic, pulse, artificially generated and recorded earthquake excitations are studied. The optimal semiactive control strategy minimizes an integral norm of the main structure squared absolute accelerations subject to the constraint that the non-linear equations of motion are satisfied and is determined through a numerical solution to the Euler-Lagrange equations. The optimal performance evaluated for an MR damper is compared to an equivalent passive-tuned mass damper with optimized stiffness and damping coefficients. It is shown numerically that the optimal performance of the MR damper is always better than the equivalent passive-tuned mass damper for all the investigated cases and the MR damper has a great potential in suppressing structural vibrations over a wide range of seismic inputs. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available