4.4 Article

Low-resolution structure refinement in electron microscopy

Journal

JOURNAL OF STRUCTURAL BIOLOGY
Volume 144, Issue 1-2, Pages 144-151

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2003.09.008

Keywords

electron microscopy; electron density map; macromolecular structure; empirical force field; real-space structure refinement

Funding

  1. NIGMS NIH HHS [P01 GM-62580] Funding Source: Medline

Ask authors/readers for more resources

A real-space structure refinement method, originally developed for macromolecular X-ray crystallography, has been applied to protein structure analysis by electron microscopy (EM). This method simultaneously optimizes the fit of an atomic model to a density map and the stereo-chemical properties of the model by minimizing an energy function. The performance of this method is characterized at different resolution and signal-to-noise ratio conditions typical for EM electron density maps. A multi-resolution scheme is devised to improve the convergence of the refinement on the global energy minimum. Applications of the method to various model systems are demonstrated here. The first case is the arrangement of FlgE molecules in the helical filament of flagellar hook, in which refinement with segmented rigid bodies improves the density correlation and reduces severe van der Waals contacts among the symmetry-related subunits. The second case is a conformational analysis of the NSF AAA ATPase in which a multi-conformer model is used in the refinement to investigate the arrangement of the two ATPase domains in the molecule. The third case is a docking simulation in which the crystal structure of actin and the NOE data from NMR experiments on the dematin headpiece are combined with a low-resolution EM density map to generate an atomic model of the F-actin-dematin headpiece structure. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available