4.3 Article

Monodomain and polydomain helicoids in chiral liquid-crystalline phases and their biological analogues

Journal

EUROPEAN PHYSICAL JOURNAL E
Volume 12, Issue 2, Pages 291-302

Publisher

SPRINGER-VERLAG
DOI: 10.1140/epje/i2002-10164-3

Keywords

-

Ask authors/readers for more resources

Many natural composites exhibit an architecture known as twisted plywood which imparts to them a superior set of physical properties. The origin of this structure is complex and not yet understood. However, it is thought to involve a lyotropic chiral nematic liquid-crystalline mesophase. Indeed, striking structural similarities have been observed and reported between biological fibrous composites and ordered fluids. In this work, a mathematical model based on the Landau-de Gennes theory has been developed to investigate the role played by constraining surfaces in the structural development of a composite material that experiences a liquid-crystalline state during the early steps of its morphogenesis. The goal of this study is to verify the need for an initial constraining surface in the formation of monodomain twisted plywoods as hypothesized by Neville (Tissue & Cell 20, 133 (1988); Biology of Fibrous Composites (Cambridge University Press, 1993)). The numerical simulations qualitatively confirm this theory and highlight the important role that modelling of liquid-crystalline self-assembly plays in the study of tissue morphogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available