4.4 Article Proceedings Paper

AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces

Journal

ULTRAMICROSCOPY
Volume 97, Issue 1-4, Pages 209-216

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-3991(03)00045-7

Keywords

atomic force microscopy; gelatin; MacMode; bacteria; Rhodopseudomonas palustris; in situ microscopy; cell immobilization

Categories

Ask authors/readers for more resources

Immobilization of particulates, especially biomolecules and cells, onto surfaces is critical for imaging with the atomic force microscope (AFM). In this paper, gelatin coated mica surfaces are shown to be suitable for immobilizing and imaging both gram positive, Staphylococcus aureus, and gram negative, Escherichia coli, bacteria in both air and liquid environments. Gelatin coated surfaces are shown to be superior to poly-L-lysine coated surfaces that are commonly used for the immobilization of cells. This cell immobilization technique is being developed primarily for live cell imaging of Rhodopseudomonas palustris. The genome of R. palustris has been sequenced and the organism is the target of intensive studies aimed at understanding genome function. Images of R. palustris grown both aerobically and anaerobically in liquid media are presented. Images in liquid media show the bacteria is rod shaped and smooth while images in air show marked irregularity and folding of the surface. Significant differences in the vertical dimension are also apparent with the height of the bacteria in liquid being substantially greater than images taken in air. In air immobilized bacterial flagella are clearly seen while in liquid this structure is not visible. Additionally, significant morphological differences are observed that depend on the method of bacterial growth. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available