4.5 Review

The role of periphyton in phosphorus retention in shallow freshwater aquatic systems

Journal

JOURNAL OF PHYCOLOGY
Volume 39, Issue 5, Pages 840-849

Publisher

BLACKWELL PUBLISHING INC
DOI: 10.1046/j.1529-8817.2003.02081.x

Keywords

eutrophication; microalgae; microphytobenthos; periphyton; phosphate; phosphorus; tertiary treatment; water quality

Ask authors/readers for more resources

Eutrophication caused by phosphorus (P) leads to water quality problems in aquatic systems, particularly freshwaters, worldwide. Processing of nutrients in shallow habitats removes P from water naturally and periphyton influences P removal from the water column in flowing waters and wetlands. Periphyton plays several roles in removing P from the water column, including P uptake and deposition, filtering particulate P from the water, and attenuating flow, which decreases advective transport of particulate and dissolved P from sediments. Furthermore, periphyton photosynthesis locally increases pH by up to 1 unit, which can lead to increased precipitation of calcium phosphate, concurrent deposition of carbonate-phosphate complexes, and long-term burial of P. Actively photosynthesizing periphyton can cause super-saturated O-2 concentrations near the sediment surface encouraging deposition of metal phosphates. However, anoxia associated with periphyton respiration at night may offset this effect. Linking the small-scale functional role of periphyton to ecosystem-level P retention will require more detailed studies in a variety of ecosystems or large mesocosms. A case study from the Everglades illustrates the importance of considering the role of periphyton in P removal from wetlands. In general, periphyton tends to increase P retention and deposition. In pilot-scale constructed periphyton-dominated wetlands in South Florida, about half of the inflowing total P was removed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available