4.8 Article

Growth rate-stoichiometry couplings in diverse biota

Journal

ECOLOGY LETTERS
Volume 6, Issue 10, Pages 936-943

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1461-0248.2003.00518.x

Keywords

growth; phosphorous; RNA; stoichiometry

Categories

Ask authors/readers for more resources

Biological stoichiometry provides a mechanistic theory linking cellular and biochemical features of co-evolving biota with constraints imposed by ecosystem energy and nutrient inputs. Thus, understanding variation in biomass carbon : nitrogen : phosphorus (C : N : P) stoichiometry is a major priority for integrative biology. Among various factors affecting organism stoichiometry, differences in C : P and N : P stoichiometry have been hypothesized to reflect organismal P-content because of altered allocation to P-rich ribosomal RNA at different growth rates ( the growth rate hypothesis, GRH). We tested the GRH using data for microbes, insects, and crustaceans and we show here that growth, RNA content, and biomass P content are tightly coupled across species, during ontogeny, and under physiological P limitation. We also show, however, that this coupling is relaxed when P is not limiting for growth. The close relationship between P and RNA contents indicates that ribosomes themselves represent a biogeochemically significant repository of P in ecosystems and that allocation of P to ribosome generation is a central process in biological production in ecological systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available