4.6 Article

Grain-size effects on tensile behavior of nickel and AlSi 316L stainless steel

Publisher

SPRINGER
DOI: 10.1007/s11661-003-0296-5

Keywords

-

Ask authors/readers for more resources

The aim of this work is to provide experimental results to understand the grain-size effects on tensile hardening of fcc polycrystalline materials. The contribution of grain size on hardening rate is discussed in terms of backstress (X) and effective-stress (Sigma(ef)) evolutions in the different hardening stages. Based on this stress partition, the origin of the classical Hall-Petch relationship is clarified at the different levels of microstructural heterogeneities. If the backstresses and effective stresses verified the Hall-Petch formulation, however, the effective stress is less dependent on grain size than the backstress. The grain-size effect on short-range internal stresses (effective stress) is well explained in terms of a mean path length using classical dislocation modeling. The backstress dependence on grain size seems to be mainly the result of intergranular plastic-strain incompatibilities in relation with the formation of a grain-boundary layer in stage I. In others stages (higher plastic strain), the interactions between intergranular and intragranular long-range internal stresses have been illustrated. The degree of these interactions remains unclear.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available