4.5 Article Proceedings Paper

Comparative effects of cadmium, copper, paraquat and benzo[a]pyrene on the actin cytoskeleton and production of reactive oxygen species (ROS) in mussel haemocytes

Journal

TOXICOLOGY IN VITRO
Volume 17, Issue 5-6, Pages 539-546

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0887-2333(03)00093-6

Keywords

mussel haemocytes; reactive oxygen species (ROS); actin cytoskeleton; cadmium; copper; benzo[a]pyrene; paraquat

Categories

Ask authors/readers for more resources

The immune defence of mussels is comprised of cell-mediated and humoral mechanisms, in which haemocytes or blood cells play a key role. Environmental pollutants such as metallic and organic xenobiotics exert immunotoxical effects on aquatic organisms. Some of these xenobiotics are known to give rise to highly reactive oxygen species (ROS), thereby leading to oxidative damage to tissue macromolecules including DNA, proteins and lipids. Previously we have detected enhancement of ROS production together with severe alterations in the actin cytoskeleton after exposure of mussel haemocytes to the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (b[a]p). In a similar way, cadmium is also known to cause disruption of the actin cytoskeleton in mussel haemocytes, however it is not known whether this effect occurs by direct action or through ROS production. The aim of the present study was to decipher whether cytoskeletal alterations caused by Cd in mussel haemocytes are linked to increased ROS production. ROS-producing model compounds copper (Cu), paraquat and b[a]p were used in parallel experiments for comparative purposes. In all contaminant exposure experiments actin cytoskeleton appeared damaged. On the other hand, ROS production was increased in paraquat and b[a]p exposure experiments but decreased in haemocytes exposed to Cu while no significant effects were detected in Cd exposure experiments. In conclusion, it appears that deleterious effects of Cu and Cd on the integrity of the actin cytoskeleton of haemocytes are not directly linked to ROS production, at least at the exposure conditions used in the present study. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available