4.7 Article

Synapse-associated protein 90/postsynaptic density-95-associated protein (SAPAP) is expressed differentially in phencyclidine-treated rats and is increased in the nucleus accumbens of patients with schizophrenia

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 28, Issue 10, Pages 1831-1839

Publisher

SPRINGERNATURE
DOI: 10.1038/sj.npp.1300212

Keywords

phencyclidine (PCP); differential display; glutamate; NMDA; schizophrenia; brain

Ask authors/readers for more resources

Phencyclidine (PCP) induces a psychotomimetic state that closely resembles schizophrenia. Therefore, PCP-treated animals can provide a model for schizophrenia. Using differential display, we identified a gene regulated by the delayed action of PCP in rat nucleus accumbens (NAcs). Sequence analysis showed that the cDNA clone obtained was identical to rat synapse-associated protein 90/ postsynaptic density-95-associated protein 1 (SAPAP1). Quantitative reverse transcriptase (RT)-PCR analysis showed that SAPAP1 mRNA had increased significantly in rat NAc (P<0.0001) and hippocampus (P<0.01) 24 h after a PCP (10 mg/kg) injection as compared to the controls. Immunoquantification using an anti-SAPAP1 antibody indicated that immunoreactivity for SAPAP1 increased significantly (P<0.05) in the NAcs of unmedicated patients with schizophrenia, as compared to the control subjects and medicated patients with schizophrenia. Our findings support the hypothesis that there is abnormal glutamatergic neurotransmission in schizophrenia and show evidence of abnormalities in the intracellular signal transduction via N-methyl-D-aspartate (NMDA) receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available