4.7 Review

Fire and grazing impacts on plant diversity and alien plant invasions in the southern Sierra Nevada

Journal

ECOLOGICAL APPLICATIONS
Volume 13, Issue 5, Pages 1355-1374

Publisher

WILEY
DOI: 10.1890/02-5002

Keywords

aliens; biological invasions; blue oak savanna; chaparral; colonization; coniferous forest; elevational patterns; fire severity; forest understory; plant diversity; Sierra Nevada (USA); species-area curves; species richness

Ask authors/readers for more resources

Patterns of native and alien plant diversity in response to disturbance were examined along an elevational gradient in blue oak savanna, chaparral, and coniferous forests. Total species richness, alien species richness, and alien cover declined with elevation, at scales from 1 to 1000 m(2). We found no support for the hypothesis that community diversity inhibits alien invasion. At the 1-m(2) point scale, where we would expect competitive interactions between the largely herbaceous flora to be most intense, alien species richness as well as alien cover increased with increasing native species richness in all communities. This suggests that aliens are limited not by the number of native competitors, but by resources that affect establishment of both natives and aliens. Blue-oak savannas were heavily dominated by alien species and consistently had more alien than native species at the 1-m(2) scale. All of these aliens are annuals, and it is widely thought that they have displaced native bunchgrasses. If true, this means that aliens have greatly increased species richness. Alternatively, there is a rich regional flora of native annual forbs that could have dominated these grasslands prior to displacement by alien grasses. On our sites, livestock grazing increased the number of alien species and alien cover only slightly over that of sites free of livestock grazing for more than a century, indicating some level of permanency to this invasion. In chaparral,,both diversity and aliens increased markedly several years after fire. Invasive species are rare in undisturbed shrublands, and alien propagules fail to survive the natural crown fires in these ecosystems. Thus, aliens necessarily must colonize after fire and, as a consequence, time since fire is an important determinant of invasive presence. Blue oak savannas are an important propagule source for alien species because they maintain permanent populations of all alien species encountered in postfire chaparral, and because the vegetation mosaic in this region places them in proximity to chaparral. The speed at which alien propagules reach a burned site and the speed at which the shrublands return to their former closed-canopy condition determine alien invasion. Frequent burning of this vegetation alters the balance in favor of alien invasion. In the higher-elevation coniferous forests, species diversity was a function of fire severity and time since fire. High-intensity fires create gaps that decrease canopy coverage and increase light levels and nutrients for an ephemeral successional flora. Few species have persistent seed banks, so the time since fire is an important determinant of colonization success. There was a highly significant interaction between fire severity and time since fire for understory cover, species richness, and alien richness and cover. Understory was sparse in the first year after fire, particularly in low-severity burns, and increased substantially several years after fire, particularly on high-severity burns. Both fire severity and time since fire affected alien species richness and dominance. Coniferous forests had about one-third as many alien species as the foothill oak savannas, and fewer than half of the species were shared between these communities. Unburned coniferous forests were largely free of alien species, whereas some burned sites had a significant alien presence, which presents a challenge for fire restoration of these forests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available