4.7 Article

Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells - Potential role in diabetic nephropathy

Journal

DIABETES
Volume 52, Issue 10, Pages 2570-2577

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.52.10.2570

Keywords

-

Ask authors/readers for more resources

Hyperglycemia increases the production of reactive oxygen species (ROS) from the mitochondrial electron transport chain in bovine endothelial cells. Because several studies have postulated a role for prostaglandins (PGs) in the glomerular hyperfiltration seen in early diabetes, we evaluated the effect of mitochondrial ROS on expression of the inducible isoform of cyclooxygenase (COX-2) in cultured human mesangial cells (HMCs). We first confirmed that incubation of HMC with 30 mmol/l glucose significantly increased COX-2 mRNA but not COX-1 mRNA, compared with 5.6 mmol/l glucose. Similarly, incubation of HMCs with 30 mmol/l glucose significantly increased mitochondrial membrane potential, intracellular ROS production, COX-2 protein expression, and PGE(2) synthesis, and these events were completely suppressed by thenoyltrifluoroacetone or carbonyl cyanide m-chlorophenylhydrazone, inhibitors of mitochondrial metabolism, or by overexpression of uncoupling protein-1 or manganese superoxide dismutase. Furthermore, increased expression of COX-2 mRNA and protein was confirmed in glomeruli of streptozotocin-induced diabetic mice. In addition, hyperglycemia induced activation of the COX-2 gene promoter, which was completely abrogated by mutation of two nuclear factor kappaB (NF-kappaB) binding sites in the promoter region. Our results suggest that hyperglycemia increases mitochondrial ROS production, resulting in NF-kappaB activation, COX-2 mRNA induction, COX-2 protein production, and PGE(2) synthesis. This chain of events might contribute to the pathogenesis of diabetic nephropathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available