4.2 Review

Muscle synergies during shifts of the center of pressure by standing persons

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 152, Issue 3, Pages 281-292

Publisher

SPRINGER
DOI: 10.1007/s00221-003-1574-6

Keywords

posture; synergy; electromyogram; principal component analysis; multiple regression; uncontrolled manifold; human

Categories

Funding

  1. NIA NIH HHS [AG-018751] Funding Source: Medline
  2. NINDS NIH HHS [NS-35032] Funding Source: Medline

Ask authors/readers for more resources

Movements by a standing person are commonly associated with adjustments in the activity of postural muscles to cause a desired shift of the center of pressure (COP) and keep balance. We hypothesize that such COP shifts are controlled (stabilized) using a small set of central variables (muscle modes, M-modes), while each M-mode induces changes in the activity of a subgroup of postural muscles. The main purpose of this study has been to explore the possibility of identification of muscle synergies in a postural task using the framework of the uncontrolled manifold (UCM) hypothesis employing the following three steps in data analysis: (i) Identification of M-modes: Subjects were asked to release a load from extended arms through a pulley system, resulting in a COP shift forward prior to load release. Electromyographic (EMG) activity of eleven postural muscles on one side of the body was integrated over a 100 ms interval corresponding to the early stage of the COP shift, and subjected to a principal component (PC) analysis across multiple repetitions of each task. Three PCs were identified and associated with a 'push-back M-mode', a 'push-forward M-mode' and a 'mixed M-mode'. (ii) Calculation of the Jacobian of the system, which relates changes in the magnitude of M-modes to COP shifts using regression techniques: Subjects performed three different tasks (releasing different loads at the back, voluntarily shifting body weight forward and backward, at different speeds) to verify if the relationship between magnitudes of M-modes and COP shifts is task or direction specific. (iii) UCM analysis: Three tasks were chosen (load release in the front, arm movement forward and backward) which were associated with an early shift in COP. A manifold was identified in the M-mode space corresponding to a certain average (across trials) shift of the COP and variance per degree of freedom within the UCM (V-UCM) and orthogonal (V-ORT) to the UCM was computed. Across subjects, V-UCM was significantly higher than V-ORT when analysis at the third step was performed using a Jacobian computed based on a set of tasks associated with a COP shift in the same direction but not in the opposite direction. This result confirms our hypothesis that the M-modes work together as a synergy to stabilize a desired shift of the COP. Forward and backward COP shifts are associated with different synergies based on the same three M-modes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available