4.4 Article Proceedings Paper

Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques

Journal

ULTRAMICROSCOPY
Volume 97, Issue 1-4, Pages 481-494

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-3991(03)00077-9

Keywords

mechanical properties; polysilicon films; SiO2 films; SiC films; Ni-P films; Au films; micro/nanoscale beams

Categories

Ask authors/readers for more resources

Mechanical properties of micro/nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Micro/nanomechanical characterization of bulk materials of undoped single-crystal silicon and thin films of undoped polysilicon, SiO2, SiC, Ni-P, and An have been carried out. Hardness, elastic modulus and scratch resistance of these materials were measured by nanoindentation and microscratching using a nanoindenter. Fracture toughness was measured by indentation using a Vickers indenter. Bending tests were performed on the nanoscale silicon beams, microscale Ni-P and An beams using a depth-sensing nanoindenter. It is found that the SiC film exhibits higher hardness, elastic modulus and scratch resistance as compared to other materials. In the bending tests, the nanoscale Si beams failed in a brittle manner with a flat fracture surface. The notched Ni-P beam showed linear deformation behavior followed by abrupt failure. The An beam showed elastic-plastic deformation behavior. FEM simulation can well predict the stress distribution in the beams studied. The nanoindentation, scratch and bending tests used in this study can be satisfactorily used to evaluate the mechanical properties of micro/nanoscale structures for use in MEMS/NEMS. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available