4.6 Article

Near-infrared fluorescence imaging of microcalcification in an animal model of breast cancer

Journal

ACADEMIC RADIOLOGY
Volume 10, Issue 10, Pages 1159-1164

Publisher

ASSOC UNIV RADIOLOGISTS
DOI: 10.1016/S1076-6332(03)00253-8

Keywords

near-infrared fluorescence; breast cancer; microcalcification; hydroxyapatite

Funding

  1. NCI NIH HHS [CA-70362] Funding Source: Medline

Ask authors/readers for more resources

Rationale and Objectives. At present, there is no animal model of breast cancer that forms reproducible microcalcification. The aim of this study was to develop a straightforward, reproducible model system that could be used to develop multimodality contrast agents for the identification of breast cancer microcalcification. Methods. The R3230 mammary adenocarcinoma cell line was implanted in the mammary fat pad of female Fischer 344 rats (two rats with two implanted tumors and two rats with a single implanted tumor). After growth to 1-2 cm in diameter, tumors were implanted with 100 mum hydroxyapatite crystals (positive control) or calcium oxalate crystals (negative control). Twenty-four hours after crystal implantation, rats were injected intravenously with a previously described near-infrared fluorescent bisphosphonate derivative known as Pam78, and the tumors were imaged using a reflectance optical imaging system. Results. Tumors implanted with hydroxyapatite displayed bright, focal, near-infrared fluorescence in the area of crystal implantation. Control tumors, grown in the same animal and implanted with calcium oxalate, did not display any near-infrared fluorescence, even along the needle track used for crystal implantation. Conclusions. A simple and rapid animal model of focal calcification in breast cancer tumors has been developed and validated. The model used Pam78, a near-infrared fluorescent contrast agent specific for hydroxyapatite. The potential usefulness of the model for developing similar contrast agents for magnetic resonance and other imaging modalities is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available