4.6 Article

Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 23, Issue 10, Pages 1227-1238

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1097/01.WCB.0000088764.02615.B7

Keywords

acidosis; potassium channels; nitric oxide; isolated middle cerebral artery; vasodilation

Ask authors/readers for more resources

Albeit controversely discussed, it has been suggested by several authors that nitric oxide (NO) serves as a permissive factor in the cerebral blood flow response to systemic hypercapnia. Potassium channels are important regulators of cerebrovascular tone and may be modulated by a basal perivascular NO level. To elucidate the functional targets of the proposed NO modulation during hypercapnia-induced vasodilation, the authors performed experiments in isolated, cannulated, and pressurized rat middle cerebral arteries (MCA). Extracellular pH was reduced from 7.4 to 7.0 in the extraluminal bath to induce NO dependent vasdilation. Acidosis increased vessel diameter by 35 +/- 10%. In separate experiments, ATP-sensitive potassium channels (K-ATP) were blocked by extraluminal application of glibenclamide (Glib), Ca2+-activated potassium channels (K-Ca) by tetraethylammonium (TEA), voltage-gated potassium channels (K-v) by 4-aminopyridine, and inward rectifier potassium channels (K-IR) by BaCl2. Na+-K+-ATP-ase was inhibited by ouabain. Application of TEA slightly constricted the arteries at pH 7.4 and slightly but significantly attenuated the vasodilation to acidosis. Inhibition of the other potassium channels or Na+-K+-ATP-ase had no effect. Combined blockade of K-ATP and K-Ca channels further reduced resting diameter, and abolished acidosis induced vasodilation. The authors conclude that mainly K-Ca channels are active under resting conditions. K-ATP and K-Ca channels are responsible for vasodilation to acidosis. Activity of one of these potassium channel families is sufficient for vasodilation to acidosis, and only combined inhibition completely abolishes vasodilation. During NO synthase inhibition, dilation to the K-ATP channel opener pinacidil or the K-Ca channel opener NS1619 was attenuated or abolished, respectively. The authors suggest that a basal perivascular NO level is necessary for physiologic K-ATP and K-Ca channel function in rat MCA. Future studies have to elucidate whether this NO dependent effect on K-ATP and K-Ca channel function is a principle mechanism of NO induced modulation of cerebrovascular reactivity and whether the variability of findings in the literature concerning a modulatory role of NO can be explained by different levels of vascular NO/cGMP concentrations within the cerebrovascular tree.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available