4.8 Article

G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA

Journal

NUCLEIC ACIDS RESEARCH
Volume 31, Issue 19, Pages 5754-5763

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkg716

Keywords

-

Funding

  1. NCI NIH HHS [N01CO12400, N01-CO-12400] Funding Source: Medline

Ask authors/readers for more resources

The d(TTGGGGGGTACAGTGCA) sequence, derived from the human immunodeficiency virus type 1 (HIV-1) central DNA flap, can form in vitro an intermolecular parallel DNA quadruplex. This work demonstrates that the HIV-1 nucleocapsid protein (NCp) exhibits a high affinity (10(8) M-1) for this quadruplex. This interaction is predominantly hydrophobic, maintained by a stabilization between G-quartet planes and the C-terminal zinc finger of the protein. It also requires 5 nt long tails flanking the quartets plus both the second zinc-finger and the N-terminal domain of NCp. The initial binding nucleates an ordered arrangement of consecutive NCp along the four single-stranded tails. Such a process requires the N-terminal zinc finger, and was found to occur for DNA site sizes shorter than usual in a sequence-dependent manner. Concurrently, NCp binding is efficient on a G'2 quadruplex also derived from the HIV-1 central DNA flap. Apart from their implication within the DNA flap, these data lead to a model for the nucleic acid architecture within the viral nucleocapsid, where adjacent single-stranded tails and NCp promote a compact assembly of NCp and nucleic acid growing from stably and primary bound NCp.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available