4.7 Article

Transcriptional regulation of IGF-I expression in skeletal muscle

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 285, Issue 4, Pages C831-C839

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00047.2003

Keywords

muscle fiber; hypertrophy; functional overload; transcription factor; myogenic regulatory factor; pre-messenger ribonucleic acid; myotube

Funding

  1. NIAMS NIH HHS [AR-30346] Funding Source: Medline

Ask authors/readers for more resources

The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control ( Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an similar to140-160% increase (P < 0.0001) in IGF-I pre-mRNA ( a transcriptional marker). IGF-I mRNA expression also increased by ∼90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by ∼5- and ∼18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available