4.7 Article

Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries

Journal

ANALYTICA CHIMICA ACTA
Volume 493, Issue 2, Pages 219-231

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0003-2670(03)00870-5

Keywords

FT-NIR spectrometry; FT-Raman spectrometry; PLS; ethanol; alcoholic beverages

Ask authors/readers for more resources

Fourier transform-near infrared (FT-NIR) and FT-Raman spectrometries have been used to design partial least squares (PLS) calibration models for the determination of the ethanol content of ethanol fuel and alcoholic beverages. In the FT-NIR measurements the spectra were obtained using air as reference, and the spectral region for PLS modeling were selected based on the spectral distribution of the relative standard deviation in concentration. In the FT-Raman measurements hexachloro-1,3-butadiene (HCBD) has been used as an external standard. In the PLS/FT-NIR modeling for ethanol fuel analysis 50 ethanol fuel standards (84.9-100% (w/w)) were used (25 in the calibration, 25 in the validation). In the PLS/FT-Raman modeling 25 standards were used (13 in the calibration, 12 in the validation). The PLS/FT-NIR and FT-Raman models for beverage analysis made use of 24 standards (0-100% (v/v)). Twelve of them contained sugars (1-5% (w/w)), one-half was used in the calibration and the other half in the validation. Different spectral pre-processing were used in the PLS modeling, depending on the type of sample investigated. In the ethanol fuel analysis the FT-NIR pre-processing was a 17 points smoothed first derivative and for beverages no spectral pre-processing was used. The FT-Raman spectra were pre-processed by vector normalization in the ethanol fuel analysis and by a second derivative (17 points smoothing) in the beverage analysis. The PLS models were used in the analysis of real ethanol fuel and beverage samples. A t-test has shown that the FT-NIR model has an accuracy equivalent to that of the reference method (ASTM D4052) in the analysis of ethanol fuel, while in the analysis of beverages, the FT-Raman model presents an accuracy equivalent to the reference method. The limits of detection for NIR and Raman calibration models were 0.05 and 0.2% (w/w), respectively. It has also been shown that both techniques, present better results than gas chromatography (GC) in evaluating the ethanol content of beverages. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available