4.7 Article

Evolution equations for strongly nonlinear internal waves

Journal

PHYSICS OF FLUIDS
Volume 15, Issue 10, Pages 2934-2948

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1604133

Keywords

-

Ask authors/readers for more resources

This paper is concerned with shallow-water equations for strongly nonlinear internal waves in a two-layer fluid, and comparison of their solitary solutions with the results of fully nonlinear computations and with experimental data. This comparison is necessary due to a contradictory nature of these equations which combine strong nonlinearity and weak dispersion. First, the Lagrangian (Whitham's) method for dispersive shallow-water waves is applied to derivation of equations equivalent to the Choi-Camassa (CC) equations. Then, using the Riemann invariants for strongly nonlinear, nondispersive waves, we obtain unidirectional, evolution equations with nonlinear dispersive terms. The latter are first derived from the CC equations and then introduced semiphenomenologically as quasistationary generalizations of weakly nonlinear Korteweg-de Vries and Benjamin-Ono models. Solitary solutions for these equations are obtained and verified against fully nonlinear computations. Comparisons are also made with available observational data for extremely strong solitons in coastal zones with well expressed pycnoclines. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available