4.0 Article

Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering

Journal

TISSUE ENGINEERING
Volume 9, Issue 5, Pages 981-994

Publisher

MARY ANN LIEBERT INC PUBL
DOI: 10.1089/107632703322495628

Keywords

-

Ask authors/readers for more resources

Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a reproducible fashion. By adjusting the salt particle size and the polymer-to-particle weight ratio in the polymer-salt composite preparation the pore size and porosity of the scaffolds could be precisely controlled. The thermal properties of the polymers used for scaffold preparation had a strong effect on the morphology, mechanical properties and dimensional stability of the scaffolds under physiological conditions. Interconnected highly porous structures (porosity, 94%; average pore size, 100,mum) based on a TMC-DLLA copolymer (19:81, mol%) had suitable mechanical properties and displayed adequate cell-material interactions to serve as scaffolds for cardiac cells. This copolymer is noncytotoxic and allows the adhesion and proliferation of cardiomyocytes. During incubation in phosphate-buffered saline at 37degreesC, these scaffolds were dimensionally stable and the number average molecular weight (M-n) of the polymer decreased gradually from 2.0 X 10(5) to 0.3 X 10(5) in a period up to 4 months. The first signs of mass loss (5%) were detected after 4 months of incubation. The degradation behavior of the porous structures was similar to that of nonporous films with similar composition and can be described by autocatalyzed bulk hydrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available