4.3 Article

Fluoroquinolone AUIC break points and the link to bacterial killing rates - Part 2: Human trials

Journal

ANNALS OF PHARMACOTHERAPY
Volume 37, Issue 10, Pages 1478-1488

Publisher

HARVEY WHITNEY BOOKS CO
DOI: 10.1345/aph.1C419

Keywords

fluoroquinolones; human infections; in vitro models; pharmacodynarnics

Ask authors/readers for more resources

OBJECTIVE: To review clinical trials with fluoroquinolones and the pharmacokinetic and pharmacodynamic parameters predictive of clinical and microbiologic outcomes and resistance. Data on fluoroquinolones are summarized and the premise that a single AUIC target >125 may be used for all fluoroquinolones; against all target organisms is examined. DATA SOURCES: Primary articles were identified by a MEDLINE search (1966-February 2002) and through secondary sources. STUDY SELECTION AND DATA EXTRACTION: All of the articles identified from the data sources were evaluated and all information deemed relevant was included. DATA SYNTHESIS: The fluoroquinolones exhibit concentration-dependent killing. This effect clearly depends upon concentrations achieved and outcomes depend upon endpoints established by individual investigators. With AUIC values <60, the actions of fluoroquinolones are essentially bacteriostatic; any observed bacterial killing is the combined effect of low concentrations in relation to minimum inhibitory concentration and the action of host factors such as neutrophils and macrophages. AUIC values >100 but <250 yield bacterial killing at a slow rate, but usually by day 7 of treatment. AUICs >250 produce rapid killing, and bacterial eradication occurs within 24 hours. Disagreements regarding target endpoints are the expected consequences of comparing microbial and clinical outcomes across animal models, in vitro experiments (Part 1), and humans when the endpoints are clearly not equivalent. Careful attention to time-related events such as speed of bacterial killing versus global endpoints such as bacteriologic cure allows optimal break points to be defined. CONCLUSIONS: Evidence from human trials favors the use of AUIC values >250 for rapid bactericidal action, regardless of whether the organism is gram-negative or gram-positive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available