4.8 Article

Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 20, Issue 10, Pages 1612-1619

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msg176

Keywords

hemipteroid; Psocoptera; mitochondrial clock; molecular evolution; rate heterogeneity

Ask authors/readers for more resources

A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hernipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one 2 another. We found that the correlation was positive and statistically significant (R-2 = 0.73, P = 0.01; R-s = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available