4.3 Article

Ghost-peak suppression in ultrafast two-dimensional NMR spectroscopy

Journal

JOURNAL OF MAGNETIC RESONANCE
Volume 164, Issue 2, Pages 351-357

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S1090-7807(03)00177-0

Keywords

two-dimensional spectroscopy; ultrafast acquisitions; ghost-peaks; artifact suppression; resolution enhancement

Ask authors/readers for more resources

Two-dimensional (2D) spectroscopy is central to many contemporary applications of NMR. Recently, we have introduced a new approach whereby 2D NMR spectra can be collected within a single scan. This methodology employs a magnetic field gradient in order to spatially encode the time evolution occurring along the indirect dimension. The discrete nature of the t(1) incrementation and its one-to-one correspondence with the spatial encoding, may lead to a number of artifacts. Most notable among these is a periodicity of the spectral peaks that are observed along the indirect axes. The appearance of such 'ghost-peaks', which may sometime coincide with genuine cross-peaks, could hamper a proper interpretation of the spectra. This contribution reviews the origin of such multiple resonances, and proposes a procedure for their elimination based on the acquisition of a small number of complementary scans. Such complementary scans can be simultaneously employed for the sake of phase-cycling out other unwanted signals, and improve the overall indirect-domain spectral resolution. Brief mathematical descriptions of the ghost-peak generation and ghost-peak suppression mechanisms are described, followed by experimental tests on a number of samples using various pulse sequences. (C) 2003 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available