4.5 Article

Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library

Journal

BIOCHEMICAL JOURNAL
Volume 375, Issue -, Pages 159-166

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20030509

Keywords

combinatorial chemistry; drug discovery; neurosecretion; protein-protein interaction; synaptic transmission; vesicle fusion

Ask authors/readers for more resources

Synthetic peptides patterned after the proteins involved in vesicle fusion [the so-called SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins] are potent inhibitors of SNARE complex assembly and neuronal exocytosis. It is noteworthy that the identification of peptide sequences not related to the SNARE proteins has not been accomplished yet: this is due, in part, to the structural constraints and the specificity of the protein interactions that govern the formation of the SNARE complex. Here we have addressed this question and used a combinatorial approach to identify peptides that modulate the assembly of the SNARE core complex and inhibit neuronal exocytosis. An alpha-helix-constrained, mixture-based, 17-mer combinatorial peptide library composed of 137 180 sequences was synthesized in a positional scanning format. Peptide mixtures were assayed for their ability to prevent the formation of the in vitro-reconstituted SIDS-resistant SNARE core complex. Library deconvolution identified eight peptides that inhibited the assembly of the SNARE core complex. Notably, the most potent 17-mer peptide (acetyl-SAAEAFAKLYAEAFAKG-NH2) abolished both Ca2+-evoked catecholamine secretion from detergent-permeabilized chromaffin cells and L-glutamate release from intact hippocampal primary cultures. Collectively, these findings indicate that amino acid sequences that prevent SNARE complex formation are not restricted to those that mimic domains of SNARE proteins, thus expanding the diversity of molecules that target neuronal exocytosis. Because of the implication of neurosecretion in the aetiology of several human neurological disorders, these newly identified peptides may be considered hits for the development of novel anti-spasmodic drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available