4.8 Article

In Situ DNA-Templated Synthesis of Silver Nanoclusters.for Ultrasensitive and Label-Free Electrochemical Detection of MicroRNA

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 2, Pages 1188-1193

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am506933r

Keywords

electrochemical; silver nanoclusters; label-free; siganl amplification; MicroRNA; serum

Funding

  1. NSFC [21275004, 21275119]
  2. New Century Excellent Talent Program of MOE [NCET-12-0932]
  3. Fundamental Research Funds for the Central Universities [XDJK2014A012]

Ask authors/readers for more resources

On the basis of the use of silver nanoclusters (AgNCs) in situ synthesized by cytosine (C)-rich loop DNA templates as signal amplification labels, the development of a label-free and highly sensitive method for electrochemical detection of microRNA (miRNA-199a) is described. The target miRNA-199a hybridizes with the partial dsDNA probes to initiate the target-assisted polymerization nicking reaction (TAPNR) amplification to produce massive intermediate sequences, which can be captured on the sensing electrode by the self-assembled DNA secondary probes. These surface-captured intermediate sequences further trigger the hybridization chain reaction (HCR) amplification to form dsDNA polymers with numerous C-rich loop DNA templates on the electrode surface. DNA-templated synthesis of AgNCs can be realized by subsequent incubation of the dsDNA polymer-modified electrode with AgNO3 and sodium borohydride. With this integrated TAPNR and HCR dual amplification strategy, the amount of in situ synthesized AgNCs is dramatically enhanced, leading to substantially amplified current response for highly sensitive detection of miRNA-199a down to 0.64 fM. In addition, the developed method also shows high selectivity toward the target miRNA-199a. Featured with high sensitivity and label-free capability, the proposed sensing scheme can thus offer new opportunities for achieving sensitive, selective, and simple detection of different types of microRNA targets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available