4.6 Article

Anthropogenic sediment retention:: major global impact from registered river impoundments

Journal

GLOBAL AND PLANETARY CHANGE
Volume 39, Issue 1-2, Pages 169-190

Publisher

ELSEVIER
DOI: 10.1016/S0921-8181(03)00023-7

Keywords

sediment transport; reservoirs; hydrology; sediment deposition; dams

Ask authors/readers for more resources

In this paper, we develop and apply a framework for estimating the potential global-scale impact of reservoir construction on riverine sediment transport to the ocean. Using this framework, we discern a large, global-scale, and growing impact from anthropogenic impoundment. Our study links information on 633 of the world's largest reservoirs (LRs) (greater than or equal to 0.5 km(3) maximum storage capacity) to the geography of continental discharge and uses statistical inferences to assess the potential impact of the remaining >44,000 smaller reservoirs (SRs). Information on the LRs was linked to a digitized river network at 30' (latitude x longitude) spatial resolution. A residence time change (Deltatau(R)) for otherwise free-flowing river water is determined locally for each reservoir and used with a sediment retention function to predict the proportion of incident sediment flux trapped within each impoundment. The discharge-weighted mean Deltatau(R) for individual impoundments distributed across the globe is 0.21 years for LRs and 0.011 years for SRs. More than 40% of global river discharge is intercepted locally by the LRs analyzed here, and a significant proportion ( approximate to 70%) of this discharge maintains a theoretical sediment trapping efficiency in excess of 50%. Half of all discharge entering LRs shows a local sediment trapping efficiency of 80% or more. Analysis of the recent history of river impoundment reveals that between 1950 and 1968, there was tripling from 5% to 15% in global LR sediment trapping, another doubling to 30% by 1985, and stabilization thereafter. Several large basins such as the Colorado and Nile show nearly complete trapping due to large reservoir construction and flow diversion. From the standpoint of sediment retention rates, the most heavily regulated drainage basins reside in Europe. North America, Africa, and Australia/Oceania are also strongly affected by LRs. Globally, greater than 50% of basin-scale sediment flux in regulated basins is potentially trapped in artificial impoundments, with a discharge-weighted sediment trapping due to LRs of 30%, and an additional contribution of 23% from SRs. If we consider both regulated and unregulated basins, the interception of global sediment flux by all registered reservoirs (n approximate to 45,000) is conservatively placed at 4-5 Gt year(-1) or 25-30% of the total. There is an additional but unknown impact due to still smaller unregistered impoundments (n approximate to 800,000). Our results demonstrate that river impoundment should now be considered explicitly in global elemental flux studies, such as for water, sediment, carbon, and nutrients. From a global change perspective, the long-term impact of such hydraulic engineering works on the world's coastal zone appears to be significant but has yet to be fully elucidated. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available