4.6 Article

Geometric measure of entanglement and applications to bipartite and multipartite quantum states

Journal

PHYSICAL REVIEW A
Volume 68, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.68.042307

Keywords

-

Ask authors/readers for more resources

The degree to which a pure quantum state is entangled can be characterized by the distance or angle to the nearest unentangled state. This geometric measure of entanglement, already present in a number of settings [A. Shimony, Ann. NY. Acad. Sci. 755, 675 (1995); H. Barnum and N. Linden, J. Phys. A: Math. Gen. 34, 67S7 (2001)], is explored for bipartite and multipartite pure and mixed states. The measure is determined analytically for arbitrary two-qubit mixed states and for generalized Werner and isotropic states, and is also applied to certain multipartite mixed states. In particular, a detailed analysis is given for arbitrary mixtures of three-qubit Greenberger-Horne-Zeilinger, W, and inverted-W states. Along the way, we point out connections of the geometric measure of entanglement with entanglement witnesses and with the Hartree approximation method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available