4.5 Article

Telomerase alone extends the replicative life span of human skeletal muscle cells without compromising genomic stability

Journal

HUMAN GENE THERAPY
Volume 14, Issue 15, Pages 1473-1487

Publisher

MARY ANN LIEBERT INC PUBL
DOI: 10.1089/104303403769211682

Keywords

-

Ask authors/readers for more resources

Continuous cycles of muscle fiber necrosis and regeneration are characteristic of the muscular dystrophies, and in some cases this leads to premature replicative senescence of myoblasts in vitro. The molecular mechanism of senescence in human myoblasts is poorly understood but there is evidence to suggest that telomeric attrition may be one of the ways by which this is achieved. We report here, for the first time, the extension of normal human skeletal muscle cell replicative life span by the reconstitution of telomerase activity. The telomerase-expressing cells show no features of transformation in vitro and have stable genomes with diploid karyotypes, do not express exceptionally high levels of c-myc and have wild-type, unmethylated CDKN2A genes. In vivo, they regenerate to repair muscle injury in immunosuppressed RAG-1 mice. This work suggests that telomerase expression to repair short telomeres may aid the expansion of diploid human muscle cells and consequently attempts at gene therapy for muscle diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available