4.5 Article

COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 23, Issue 19, Pages 6798-6808

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.19.6798-6808.2003

Keywords

-

Funding

  1. NCI NIH HHS [P01CA75719] Funding Source: Medline

Ask authors/readers for more resources

Csn3 (Cops3) maps to the mouse chromosome 11 region syntenic to the common deletion interval for the Smith-Magenis syndrome, a contiguous gene deletion syndrome. It encodes the third subunit of an eight-subunit protein complex, the COP9 signalosome (CSN), which controls a wide variety of molecules of different functions. Mutants of this complex caused lethality at early development of both plants and Drosophila melanogaster. CSN function in vivo in mammals is unknown. We disrupted the murine Csn3 gene in three independent ways with insertional vectors, including constructing a approximate to3-Mb inversion chromosome. The heterozygous mice appeared normal, although the protein level was reduced. Csn3(-/-) embryos arrested after 5.5 days postcoitum (dpc) and resorbed by 8.5 dpc. Mutant embryos form an abnormal egg cylinder which does not gastrulate. They have reduced numbers of epiblast cells, mainly due to increased cell death. In the Csn3(-/-) mice, subunit 8 of the COP9 complex was not detected by immunohistochemical techniques, suggesting that the absence of Csn3 may disrupt the entire COP9 complex. Therefore, Csn3 is important for maintaining the integrity of the CON signalosome and is crucial to maintain the survival of epiblast cells and thus the development of the postimplantation embryo in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available