4.8 Article

Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine

Journal

JOURNAL OF HEPATOLOGY
Volume 39, Issue 4, Pages 480-488

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-8278(03)00228-9

Keywords

bile acid; cholestasis; orphan nuclear receptor; transcription factor

Ask authors/readers for more resources

Background/Aims: Adaptive changes in transporter expression in liver and kidney provide alternative excretory pathways for biliary constituents during cholestasis and may thus attenuate liver injury. Whether adaptive changes in ATP-binding cassette (ABC) transporter expression are stimulated by bile acids and their nuclear receptor FXR is unknown. Methods: Hepatic, renal and intestinal ABC transporter expression was compared in cholic acid (CA)- and ursodeoxycholic acid (UDCA)-fed wild-type (FXR+/+) and FXR knock-out mice (FXR-/-). Expression was assessed by reverse transcription-polymerase chain reaction, immunoblotting and immunofluorescence microscopy. Results: CA feeding stimulated hepatic Mrp2, Mrp3, Bsep and renal Mrp2 as well as intestinal Mrp2 and Mrp3 expression. Lack of Bsep induction by CA in FXR-/- was associated with disseminated hepatocyte necrosis which was not prevented by compensatory induction of Mrp2 and Mrp3. With the exception of Bsep, UDCA stimulated expression of hepatic, renal and intestinal ABC transporters independent of FXR without inducing liver toxicity. Conclusions: Toxic CA and non-toxic UDCA induce adaptive ABC transporter expression, independent of FXR with the exception of Bsep. Stimulation of hepatic Mrp3 as well as intestinal and renal Mrp2 by UDCA may contribute to its therapeutic effects by inducing alternative excretory routes for bile acids and other cholephiles. (C) 2003 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available