4.5 Article

IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed

Journal

MOLECULAR MICROBIOLOGY
Volume 50, Issue 1, Pages 45-60

Publisher

WILEY
DOI: 10.1046/j.1365-2958.2003.03674.x

Keywords

-

Ask authors/readers for more resources

Asymmetric localization of proteins is essential to many biological functions of bacteria. Shigella IcsA, an outer membrane protein, is localized to the old pole of the bacillus, where it mediates assembly of a polarized actin tail during infection of mammalian cells. Actin tail assembly provides the propulsive force for intracellular movement and intercellular dissemination. Localization of IcsA to the pole is independent of the amino-terminal signal peptide (Charles, M., Perez, M., Kobil, J. H., and Goldberg, M. B., 2001, Proc Natl Acad Sci USA 98: 9871 - 9876) suggesting that IcsA targeting occurs in the bacterial cytoplasm and that its secretion across the cytoplasmic membrane occurs only at the pole. Here, we characterize the mechanism by which IcsA is secreted across the cytoplasmic membrane. We present evidence that IcsA requires the SecA ATPase and the SecYEG membrane channel ( translocon) for secretion. Our data suggest that YidC is not required for IcsA secretion. Furthermore, we show that polar localization of IcsA is independent of SecA. Finally, we demonstrate that while IcsA requires the SecYEG translocon for secretion, components of this apparatus are uniformly distributed within the membrane. Based on these data, we propose a model for coordinate polar targeting and secretion of IcsA at the bacterial pole.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available