4.6 Article

Role of atomic electronics in f-element bond formation: Bond energies of lanthanide and actinide oxide molecules

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 107, Issue 39, Pages 7891-7899

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp035003n

Keywords

-

Ask authors/readers for more resources

Metal oxide molecules are of particular interest from both a scientific and technological perspective in view of their elementary nature and role in such processes as high-temperature vaporization. A fundamental and important property is the bond energy between the metal center and the oxygen in neutral and ionic monoxide molecules, BDE[MO] and BDE[MO(+)]. For the 4f-block lanthanide (Ln) and 5f-block actinide (An) inner transition metals, it has been demonstrated that many chemical properties can be rationalized from the electronic structures and energetics of the isolated metal atom or ion. In the present work, a relationship is developed to reliably predict known BDE[LnO], BDE[LnO(+)], BDE[AnO], and BDE[AnO(+)] energies from spectroscopically determined electronic properties; this relationship is employed to estimate unknown bond energies. A notable implication of the results is that effective bonding between the metal center and the oxygen atom in these species requires two unpaired valence d electrons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available