4.6 Article

Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5-bisphosphate-dependent endosome compartmentalization

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 40, Pages 38786-38795

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M306864200

Keywords

-

Ask authors/readers for more resources

Phosphatidylinositol 3,5-bisphosphate is a membrane lipid found in all eukaryotes so far studied but down-stream effector proteins of this lipid have yet to be identified. Here we report the use of cDNA phage libraries in conjunction with synthetic biotinylated derivatives of phosphatidylinositol 3,5-bisphosphate in the identification of a mammalian phosphatidylinositol 3,5-bisphosphate-binding protein, mVps24p. This protein is orthologous to the Saccharomyces cerevisiae protein, Vps24p, a class-E vacuolar protein-sorting protein. Using in vitro liposome binding and competition assays, we demonstrate that mVps24p selectively binds to phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate in preference to other phosphoinositides tested. When expressed in cultured mammalian cells, full-length mVps24p is cytosolic. However, when cells expressing the full-length mVps24p are co-transfected with a mutated form of mVps4p (which is defective in ATP hydrolysis), or when a N-terminal construct of mVps24p is expressed, the class-E cellular phenotype with swollen vacuoles is induced and mVps24p is membrane-associated. Furthermore, the accumulation of the N-terminal mVps24p construct on the swollen endosomal membranes is abrogated when phosphatidylinositol 3,5-bisphosphate synthesis is blocked with wortmannin. These data provide the first direct link between phosphatidylinositol 3,5-bisphosphate and the protein machinery involved in the production of the class-E cellular phenotype. We hypothesize that accumulation of Vps24 on membranes occurs when membrane association (dependent on interaction of phosphatidylinositol 3,5-bisphosphate with the N-terminal domain of the protein) is uncoupled from membrane disassociation (driven by Vps4p).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available