4.6 Article

Optical devices based on liquid crystal photonic bandgap fibres

Journal

OPTICS EXPRESS
Volume 11, Issue 20, Pages 2589-2596

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.11.002589

Keywords

-

Categories

Ask authors/readers for more resources

Photonic Crystal Fibers (PCFs) have appeared as a new class of optical waveguides, which have attracted large scientific and commercial interest during the last years. PCFs are microstructured waveguides, usually in silica, with a large number of air holes located in the cladding region of the fiber. The size and location of these air holes opens up for a large degree of design freedom within optical waveguide design. Further, the existence of air holes in the PCF gives access close to the fiber core and by introducing new materials into the air holes, a high interaction between light and hole material can be obtained, while maintaining the microstructure of the waveguide. In this paper, we describe what we call Liquid Crystal Photonic Bandgap Fibers, which are PCFs infiltrated with Liquid Crystals (LCs) in order to obtain increased fiber functionality. We describe a thermooptic fiber switch with an extinction ratio of 60dB and tunable PBGs using thermo-optic tuning of the LC. These devices operate by the PBG effect and are therefore highly sensitive to the refractive index distributions in the holes. (C) 2003 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available