4.7 Article

Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: Peptide identification and determination of enzyme specificity

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 51, Issue 21, Pages 6300-6308

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf026242v

Keywords

whey proteins; beta-lactoglobulin; enzymatic hydrolysis; Alcalase; aggregation; peptides; hydrophobic interactions; net charge

Ask authors/readers for more resources

Extensive hydrolysis of whey protein isolate by Alcalase was shown to induce gelation mainly via hydrophobic interactions. The aim of this work was to characterize the peptides released in order to better understand this phenomenon. The apparent molecular mass distribution indicated that aggregates were formed by small molecular mass peptides (<2000 Da). One hundred and thirty peptides with various lengths were identified by reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Alcalase was observed to have a high specificity for aromatic (Phe, Trp, and Tyr), acidic (Glu), sulfur-containing (Met), aliphatic (Leu and Ala), hydroxyl (Ser), and basic (Lys) residues. Most peptides had an average hydrophobicity of 1-1.5 kcal/residue and a net charge of 0 at the pH at which gelation occurred (6.0). Therefore, an intermolecular attractive force such as hydrophobic interaction suggests the formation of aggregates that further leads to the formation of a gel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available