4.5 Article

Large clusters of α7-containing nicotinic acetylcholine receptors on chick spinal cord neurons

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 465, Issue 2, Pages 195-204

Publisher

WILEY
DOI: 10.1002/cne.10856

Keywords

motoneurons; spines; lipid rafts; preganglionic

Funding

  1. NINDS NIH HHS [NS12601, NS35469] Funding Source: Medline

Ask authors/readers for more resources

Nicotinic acetylcholine receptors containing the alpha7 gene product are widely expressed in the nervous system and have high calcium permeabilities that allow them to influence numerous calcium-dependent processes. Though often found at presynaptic locations, where they enhance transmitter release, the receptors can also occupy postsynaptic sites. Highest levels have been reported for chick ciliary ganglion neurons, where the postsynaptic receptors are concentrated on somatic spines arranged in clumps and appear as large receptor clusters. We show here that subpopulations of chick spinal cord neurons also express high levels of alpha7-containing receptors and arrange them in large clusters. The populations include peripheral motoneurons, presumptive preganglionic neurons, neurons adjacent to the lateral motor column, and possible interneurons in the ventral horn. In many cases, the receptor clusters codistribute with filamentous actin, as do clusters on ciliary ganglion neurons, where the actin represents a somatic spine constituent. In other respects, the spinal cord clusters differ. Those on motoneurons codistribute with the actin-associated component drebrin, as do the clusters on ciliary ganglion neurons, but the clusters on preganglionic neurons do not. Preganglionic neurons do, however, stain for lipid raft components as found for ciliary ganglion neurons, where the rafts embed the receptor-enriched spines. The results demonstrate that CNS neurons can configure alpha7-containing nicotinic receptors into large clusters but also suggest that the clusters are not likely to reflect a common molecular substructure on all neurons. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available