4.8 Article

Raft ceramide in molecular medicine

Journal

ONCOGENE
Volume 22, Issue 45, Pages 7070-7077

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1207146

Keywords

ceramide; acid sphingomyelinase (ASM); radiation; bacteria; rafts; membrane platforms

Ask authors/readers for more resources

Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available