4.4 Review

Follicular oocyte growth and acquisition of developmental competence

Journal

ANIMAL REPRODUCTION SCIENCE
Volume 78, Issue 3-4, Pages 203-216

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-4320(03)00091-5

Keywords

mammals; oogenesis; follicle cells; morphology; meiosis

Ask authors/readers for more resources

At birth the ovaries of mammalian females contain a finite store of primordial follicle oocytes. Each oocyte and its surrounding follicle cells share a communication system, the gap junction network, which facilitates the transfer of signals as well as nutrients in to and out off the oocyte and between follicle cells. The connexin family of proteins form the building blocks of this communication network, their expression is specific to the differentiated state of the granulose cell and the stage of folliculogenesis. Factors such as the c-kit receptor and its ligand, IGF-I, IGF-I receptors and the IGF binding proteins, members of the transforming growth factor beta (TGFbeta) family, in particular, some of the bone morphogenetic proteins, play prominent roles in oogenesis, primordial follicle activation and subsequent follicle/oocyte development culminating in oocyte ovulation. The oocyte undergoes a progressive series of morphological modifications as it grows and proceeds through the different stages of development. These structural rearrangements facilitate the increasing energy and nucleic acid synthesis requirements of the developing oocyte and are a prerequisite to the oocytes achievement of meiotic and embryo developmental competence. Several factors determine the ultimate competence of the oocyte, these have been investigated and attempts made to mimic these conditions in vitro. The complexity of the orchestration of the events that control oocyte growth and ultimate acquisition of developmental competence is under continuous investigation. The present review describes some of the findings to date. (C) 2003 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available