4.5 Article

Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells

Journal

BIOCHEMICAL JOURNAL
Volume 375, Issue -, Pages 395-403

Publisher

PORTLAND PRESS LTD
DOI: 10.1042/BJ20030556

Keywords

ADP-ribosyl cyclase; cyclic ADP-ribose; cyclic ADP-ribose hydrolase; lipopolysaccharide; nicotinamideadenine dinucleotide (NAD(+)); peripheral blood mononuclear cell

Funding

  1. NIGMS NIH HHS [GM61568] Funding Source: Medline

Ask authors/readers for more resources

Cyclic ADP-ribose (cADPR), a universal calcium mobilizer from intracellular stores, was recently demonstrated to stimulate proliferation of various cell types. The role of cADPR in a specific process of monocyte- and plasma-mediated activation of T-lymphocytes by lipopolysaccharide (LPS) was addressed using human mononuclear cells from peripheral blood (PBMCs). Incubation of PBMCs with 0.1 mug/ml of LPS for 24 h provided a doubling in the intracellular levels of cADPR as compared with unstimulated PBMCs. The cADPR increase was abolished either by prior removal of monocytes or by pre-incubating a whole PBMC population with a monoclonal antibody against the monocyte marker CD14. The increased concentrations of intracellular cADPR elicited by LPS stimulation were paralleled by significant increases in NAD(+) levels and in the activities of ectocellular and membrane-bound fractions of ADP-ribosyl cyclase/ cADPR hydrolase activities. A cytosolic ADP-ribosyl cyclase was also detectable in PBMCs and its activity was comparably enhanced by LPS stimulation. This soluble cyclase is distinguished from the membrane-bound cyclase by both substrate and inhibitor sensitivities. LPS-stimulated PBMCs showed 2-3-fold increases of intracellular calcium ([Ca2+](j)), and these changes were prevented completely by the cADPR antagonist 8-Br-cADPR and by ryanodine. Both compounds, and the cyclase inhibitor nicotinamide, significantly inhibited the T-lymphocyte proliferation induced by LPS in PBMCs. These results demonstrate that cADPR plays a role of second messenger in the adaptive immune recognition process of LPS-stimulated proliferation of PBMCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available